Characteristics of infrasound signals from North Korean underground nuclear explosions on 2016 January 6 and September 9

16Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study investigates infrasound signals from North Korean underground nuclear explosions on 2016 January 6 at 01:30:01 UTC (UNEJ16) and on 2016 September 9 at 00:30:01 UTC (UNES16). Infrasound observations from eight, seismo-acoustic arrays at distances of 300- 600 km from the explosions and aligned approximately east-west across South Korea are used in the analysis. Progressive multichannel correlation was used followed by analyst review to identify the infrasound arrivals with estimates of azimuth, phase velocity, celerity, F-statistic, signal-to-noise ratio, correlation and signal duration. These observations are compared with model predictions of travel path, ray turning height and relative amplitudes, using Groundto- Space atmospheric specifications at the time of each explosion. Stratospheric conditions at the time of the UNEJ16 are favourable to the Korean arrays when all arrays detected infrasound signals, while the few detections for UNES16 are consistent with unfavourable stratospheric winds and reduced amplitude thermospheric arrivals. Infrasound locations of the explosions were estimated using the Bayesian Infrasonic Source Location method (BISL), with wind-corrected backazimuth estimates based on the ray tracing calculations. Adding wind corrections to BISL resulted in infrasound locations up to 50 per cent closer to the seismic epicentre over uncorrected locations. The UNES16 infrasound location estimate using atmospheric corrections had larger differences (~67 km difference from seismic location) than the UNEJ16 location (~11 km difference from seismic location) as a result of the reduced number of observations and poor azimuth coverage for UNES16. Based on stratospheric phases recorded at six arrays and the empirical yield-scaling relations,wind corrected amplitudes from UNEJ16 lead to equivalent infrasound source energy estimates between 0.9 and 16.1 tons of TNT detonated in the atmosphere with an average of 6.4 tons and a standard deviation of 4.6 tons.

Cite

CITATION STYLE

APA

Park, J., Che, I. Y., Stump, B., Hayward, C., Dannemann, F., Jeong, S. J., … Wright, V. (2018). Characteristics of infrasound signals from North Korean underground nuclear explosions on 2016 January 6 and September 9. Geophysical Journal International, 214(3), 1865–1885. https://doi.org/10.1093/GJI/GGY252

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free