Lipschitz stability of solutions to parametric optimal control problems for parabolic equations

18Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

A class of parametric optimal control problems for semilinear parabolic equations is considered. Using recent regularity results for solutions of such equations, sufficient conditions are derived under which the solutions to optimal control problems are locally Lipschitz continuous functions of the parameter in the L∞-norm. It is shown that these conditions are also necessary, provided that the dependence of data on the parameter is sufficiently strong. © Heldermann Verlag.

Cite

CITATION STYLE

APA

Malanowski, K., & Tröltzsch, F. (1999). Lipschitz stability of solutions to parametric optimal control problems for parabolic equations. Zeitschrift Für Analysis Und Ihre Anwendungen, 18(2), 469–489. https://doi.org/10.4171/zaa/893

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free