Scintillators have long been used for probing the high energy universe. The reliability and low cost of scintillator-PMT detectors have made them the de facto standard for experiments on high altitude balloons and in orbiting satellites. New scintillators and new readout technologies offer important opportunities for more capable experiments. Recent scintillator developments include faster signals, increased light output, improved energy resolution, and better handling characteristics. Although PMTs remain effective for scintillator readout, new technologies offer more compact, rugged devices with much lower operational voltages. The adoption of these technologies is not without its difficulties, especially for space applications, where the technology readiness level can be an important consideration. To illustrate these issues, we will discuss the use of scintillators in Compton imaging experiments. At energies from about 500 keV to 30 MeV, Compton telescopes are the most effective means of imaging the gamma ray sky. To date, the only Compton telescope that has flown in space was the COMPTEL instrument on NASA's Compton Gamma Ray Observatory (CGRO). CGRO, launched in 1991 and de-orbited in 2000, was based entirely on the use of technologies from the 1980's. We have been working on an improved Compton telescope design, called the Advanced Scintillator Compton Telescope (ASCOT). It is much like COMPTEL, but utilizes up-to-date scintillator and readout technologies.
CITATION STYLE
McConnell, M. L., Bloser, P. F., Legere, J., & Ryan, J. M. (2016). Applications for New Scintillator Technologies in Gamma Ray Astronomy. In Journal of Physics: Conference Series (Vol. 763). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/763/1/012008
Mendeley helps you to discover research relevant for your work.