Connecting neurons to a mobile robot: An in vitro bidirectional neural interface

90Citations
Citations of this article
185Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For this reason "embodiment" represents an innovative and very suitable experimental paradigm when studying the neural processes underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA), to external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture, which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configurations can be tested. This hybrid system can be used for studying the computational properties and information coding in biological neuronal networks with far-reaching implications for the future development of advanced neuroprostheses.

Cite

CITATION STYLE

APA

Novellino, A., D’Angelo, P., Cozzi, L., Chiappalone, M., Sanguineti, V., & Martinoia, S. (2007). Connecting neurons to a mobile robot: An in vitro bidirectional neural interface. Computational Intelligence and Neuroscience, 2007. https://doi.org/10.1155/2007/12725

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free