Identification of recent cases of hepatitis C virus infection using physical-chemical properties of hypervariable region 1 and a radial basis function neural network classifier

10Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

RESULTS: Using dinucleotide auto correlation (DAC), we identified physical-chemical (PhyChem) features of HVR1 variants. Significant (p < 9.58 × 10-4) differences in the means and frequency distributions of PhyChem features were found between HVR1 variants sampled from patients with recent vs chronic (R/C) infection. Moreover, the R-associated variants were found to occupy distinct and discrete PhyChem spaces. A radial basis function neural network classifier trained on the PhyChem features of intra-host HVR1 variants accurately classified R/C-HVR1 variants (classification accuracy (CA) = 94.85%; area under the ROC curve, AUROC = 0.979), in 10-fold cross-validation). The classifier was accurate in assigning individual HVR1 variants to R/C-classes in the testing set (CA = 84.15%; AUROC = 0.912) and in detection of infection duration (R/C-class) in patients (CA = 88.45%). Statistical tests and evaluation of the classifier on randomly-labeled datasets indicate that classifiers' CA is robust (p < 0.001) and unlikely due to random correlations (CA = 59.04% and AUROC = 0.50). CONCLUSIONS: The PhyChem features of intra-host HVR1 variants are strongly associated with the duration of HCV infection. Application of the PhyChem biomarkers to models for detection of the R/C-state of HCV infection in patients offers a new opportunity for detection of outbreaks and for molecular surveillance. The method will be available at https://webappx.cdc.gov/GHOST/ to the authenticated users of Global Hepatitis Outbreak and Surveillance Technology (GHOST) for further testing and validation. BACKGROUND: Identification of acute or recent hepatitis C virus (HCV) infections is important for detecting outbreaks and devising timely public health interventions for interruption of transmission. Epidemiological investigations and chemistry-based laboratory tests are 2 main approaches that are available for identification of acute HCV infection. However, owing to complexity, both approaches are not efficient. Here, we describe a new sequence alignment-free method to discriminate between recent (R) and chronic (C) HCV infection using next-generation sequencing (NGS) data derived from the HCV hypervariable region 1 (HVR1).

Cite

CITATION STYLE

APA

Lara, J., Teka, M., & Khudyakov, Y. (2017). Identification of recent cases of hepatitis C virus infection using physical-chemical properties of hypervariable region 1 and a radial basis function neural network classifier. BMC Genomics, 18, 880. https://doi.org/10.1186/s12864-017-4269-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free