Acoustic telemetry detection probability and location accuracy in a freshwater wetland embayment

4Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: In recent years, large-scale acoustic telemetry observation networks have become established globally to gain a better understanding of the ecology, movements and population dynamics of fish stocks. When studying a species that uses different habitats throughout its life history difficulty may arise where acoustically suboptimal habitats are used, such as shallow, vegetated areas. To test the feasibility of active tracking in these acoustically suboptimal habitats, we quantified detection probability and location error as a function of several environmental variables with two transmitter types in a shallow freshwater embayment. Results: When placed in nearshore areas (< 1 m deep), the higher-powered transmitter (158 dB) had significantly greater detection probability than the lower-powered transmitter (152 dB). For both transmitter types, detection probability declined at 200 m; however, at the 100 m distance the higher-powered transmitter had greater than 50% detection probability per ping cycle (50.4%) while the lower-powered transmitter was substantially less (29.4%). Additionally, detection probability increased when the transmitter was deployed within sparse, senescent Phragmites spp. vegetation (14%). Estimated positional accuracy of transmitters deployed at known locations (location error) was variable (error range: 13–259 m), and was generally higher for the more powerful transmitter. Location error was minimized when the lower-powered transmitter was located near softened shoreline areas compared to near man-made armored shorelines (i.e., rip-rap). Conclusion: While benefits exist for maximizing transmitter power (e.g., increased detection range in open-water environments), use of a lower-powered transmitter may be advantageous for active tracking specific locations of fish inhabiting shallow water environments, such as in estuarine tidal marshes and shallow wetlands. Thus, when planning acoustic telemetry studies, researchers should conduct site-specific preliminary detection probability/location error experiments to better understand the utility of acoustic telemetry to investigate fish movements in acoustically suboptimal conditions.

Cite

CITATION STYLE

APA

Stott, N. D., Faust, M. D., Vandergoot, C. S., & Miner, J. G. (2021). Acoustic telemetry detection probability and location accuracy in a freshwater wetland embayment. Animal Biotelemetry, 9(1). https://doi.org/10.1186/s40317-021-00243-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free