DNA concentrations in municipal drinking water samples were measured by fluorometry, using Hoechst 33258 fluorochrome. The concentration, extraction, and detection methods used were adapted from existing techniques. The method is reproducible, fast, accurate, and simple. The amounts of DNA per cell for five different bacterial isolates obtained from drinking water samples were determined by measuring DNA concentration and total cell concentration (acridine orange epifluorescence direct cell counting) in stationary pure cultures. The relationship between DNA concentration and epifluorescence total direct cell concentration in 11 different drinking water samples was linear and positive; the amounts of DNA per cell in these samples did not differ significantly from the amounts in pure culture isolates. We found significant linear correlations between DNA concentration and colony-forming unit concentration, as well as between epifluorescence direct cell counts and colony-forming unit concentration. DNA concentration measurements of municipal drinking water samples appear to monitor changes in bacteriological quality at least as well as total heterotrophic plate counting and epifluorescence direct cell counting.
CITATION STYLE
McCoy, W. F., & Olson, B. H. (1985). Fluorometric determination of the DNA concentration in municipal drinking water. Applied and Environmental Microbiology, 49(4), 811–821. https://doi.org/10.1128/aem.49.4.811-817.1985
Mendeley helps you to discover research relevant for your work.