Resolving biodegradation patterns of persistent saturated hydrocarbons in weathered oil samples from the Deepwater Horizon disaster

90Citations
Citations of this article
117Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Biodegradation plays a major role in the natural attenuation of oil spills. However, limited information is available about biodegradation of different saturated hydrocarbon classes in surface environments, despite that oils are composed mostly of saturates, due to the limited ability of conventional gas chromatography (GC) to resolve this compound group. We studied eight weathered oil samples collected from four Gulf of Mexico beaches 12-19 months after the Deepwater Horizon disaster. Using comprehensive two-dimensional gas chromatography (GC×GC), we successfully separated, identified, and quantified several distinct saturates classes in these samples. We find that saturated hydrocarbons eluting after n-C22 dominate the GC-amenable fraction of these weathered samples. This compound group represented 8-10%, or 38-68 thousand metric tons, of the oil originally released from Macondo well. Saturates in the n-C22 to n-C29 elution range were found to be partly biodegraded, but to different relative extents, with ease of biodegradation decreasing in the following order: n-alkanes > methylalkanes and alkylcyclopentanes+alkylcyclohexanes > cyclic and acyclic isoprenoids. We developed a new quantitative index designed to characterize biodegradation of >n-C22 saturates. These results shed new light onto the environmental fate of these persistent, hydrophobic, and mostly overlooked compounds in the unresolved complex mixtures (UCM) of weathered oils. © 2014 American Chemical Society.

Cite

CITATION STYLE

APA

Gros, J., Reddy, C. M., Aeppli, C., Nelson, R. K., Carmichael, C. A., & Arey, J. S. (2014). Resolving biodegradation patterns of persistent saturated hydrocarbons in weathered oil samples from the Deepwater Horizon disaster. Environmental Science and Technology, 48(3), 1628–1637. https://doi.org/10.1021/es4042836

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free