CRISPR-Cas9-based genome-wide screening identified novel targets for treating sorafenib-resistant hepatocellular carcinoma: a cross-talk between FGF21 and the NRF2 pathway

15Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The treatment of hepatocellular carcinoma (HCC) has been dominated by multikinase inhibitors for more than a decade. However, drug resistance can severely restrict the efficacy of these drugs. Using CRISPR/CAS9 genome library screening, we evaluated Kelch-like ECH-associated protein 1 (KEAP1) as a key regulator of sorafenib’s susceptibility in HCC. We also investigated whether KEAP1’s knockdown can stabilize nuclear factor (erythroid-derived 2)-like 2 (NRF2) protein levels that led to sorafenib’s resistance, including an NRF2 inhibitor that can synergize with sorafenib to abolish HCC’s growth in vitro and in vivo. Furthermore, we clarified that fibroblast growth factor 21 (FGF21) is an important downstream regulator of NRF2 in HCC. Intriguingly, we observed that FGF21 bound to NRF2 through the C-terminus of FGF21, thereby stabilizing NRF2 by reducing its ubiquitination and generating a positive feedback loop in sorafenib-resistant HCC. These findings, therefore, propose that targeting FGF21 is a promising strategy to combat HCC sorafenib’s resistance.

Cite

CITATION STYLE

APA

Chen, J., Jiang, S., Shao, H., Li, B., Ji, T., Staiculescu, D., … Cai, X. (2022). CRISPR-Cas9-based genome-wide screening identified novel targets for treating sorafenib-resistant hepatocellular carcinoma: a cross-talk between FGF21 and the NRF2 pathway. Science China Life Sciences, 65(10), 1998–2016. https://doi.org/10.1007/s11427-021-2067-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free