Symbolic analysis of imperative programming languages

6Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present a generic symbolic analysis framework for imperative programming languages. Our framework is capable of computing all valid variable bindings of a program at given program points. This information is invaluably for domain-specific static program analyses such as memory leak detection, program parallelisation. and the detection of superfluous bound checks, variable aliases and task deadlocks. We employ path expression algebra to model the control flow information of programs. A homomorpliism maps path expressions into the symbolic domain. At the center of the symbolic domain is a compact algebraic structure called supercontext. A supercontext contains the complete control and data flow analysis information valid at a given program point. Our approach to compute supercontexts is based purely on algebra and is fully automated. This novel representation of program semantics closes the gap between program analysis und computer algebra systems, which makes supercontexts an ideal intermediate representation for all domain-specific static program analyses. Our approach is more general than existing methods because it can derive solutions for arbitrary (even intra-loop) nodes of reducible and irreducible control flow graphs. We prove the correctness of our symbolic analysis method. Our experimental results show that the problem sizes arising from real-world applications such as the SPEC95 benchmark suite are tractable for our symbolic analysis framework. © Springer-Verlag Berlin Heidelberg 2006.

Cite

CITATION STYLE

APA

Burgstaller, B., Scliolz, B., & Blieberger, J. (2006). Symbolic analysis of imperative programming languages. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4228 LNCS, pp. 172–194). Springer Verlag. https://doi.org/10.1007/11860990_12

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free