Experimental study on vibration control of suspended piping system by single-sided pounding tuned mass damper

34Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

Abstract

Suspended piping systems often suffer from severe damages when subjected to seismic excitation. Due to the high flexibility of the piping systems, reducing their displacement is important for the prevention of damage during times of disaster. A solution to protecting piping systems during heavy excitation is the use of the emerging pounding tuned mass damper (PTMD) technology. In particular, the single-sided PTMD combines the advantages of the tuned mass damper (TMD) and the impact damper, including the benefits of a simple design and rapid, efficient energy dissipation. In this paper, two single-sided PTMDs (spring steel-type PTMD and simple pendulum-type PTMD) were designed and fabricated. The dampers were tested and compared with the traditional TMD for mitigating free vibration and forced vibration. In the free vibration experiment, both PTMDs suppressed vibrations much faster than the TMD. For the forced vibration test, the frequency response of the piping system was obtained for three conditions: without control, with TMD control, and with PTMD control. These novel results demonstrate that the single-sided PTMD is a cost-effective method for efficiently and passively mitigating the vibration of suspended piping systems. Thus, the single-sided PTMD will be an important tool for increasing the resilience of structures as well as for improving the safety of their occupants.

Cite

CITATION STYLE

APA

Tan, J., Ho, S. C. M., Zhang, P., & Jiang, J. (2019). Experimental study on vibration control of suspended piping system by single-sided pounding tuned mass damper. Applied Sciences (Switzerland), 9(2). https://doi.org/10.3390/app9020285

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free