Study on CO2 capture characteristics and kinetics of modified potassium-based adsorbents

23Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

Abstract

In this paper, a silica aerogel support was prepared by two-step sol-gel method, and the active component K2CO3 was supported on the support by wet loading to obtain a modified potassium-based CO2 adsorbent. As the influences of reaction conditions on the CO2 capture characteristics of modified potassium-based adsorbents, the reaction temperature (50 °C, 60 °C, 70 °C, 80 °C), water vapor concentration (10%, 15%, 20%), CO2 concentration (5%, 10%, 12.5%, 15%), and total gas flow rate (400 mL/min, 500 mL/min, 600 mL/min) were studied in a self-designed fixed-bed reactor. At the same time, the low-temperature nitrogen adsorption experiment, scanning electron microscope, and X-ray diffractometer were used to study the microscopic characteristics of modified potassium-based adsorbents before and after the reaction. The results show that the silica aerogel prepared by the two-step sol-gel method has an excellent microstructure, and its specific surface area and specific pore volume are as high as 838.9 m2/g and 0.85 cm3/g, respectively. The microstructure of K2CO3 loaded on the support is improved, which promotes the CO2 adsorption performance of potassium-based adsorbents. The adsorption of CO2 by potassium-based adsorbents can be better described by the Avrami fractional kinetic model and the modified Avrami fractional kinetic model, and it is a complex multi-path adsorption process, which is related to the adsorption site and activity. The optimal adsorption temperature, water vapor concentration, CO2 concentration, and total gas volume were 60 °C, 15%, 12.5%, and 500 mL/min, respectively.

Cite

CITATION STYLE

APA

Guo, B., Wang, Y., Shen, X., Qiao, X., Jia, L., Xiang, J., & Jin, Y. (2020). Study on CO2 capture characteristics and kinetics of modified potassium-based adsorbents. Materials, 13(4). https://doi.org/10.3390/ma13040877

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free