Fundamental dissipation due to bound fermions in the zero-temperature limit

14Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The ground state of a fermionic condensate is well protected against perturbations in the presence of an isotropic gap. Regions of gap suppression, surfaces and vortex cores which host Andreev-bound states, seemingly lift that strict protection. Here we show that in superfluid 3He the role of bound states is more subtle: when a macroscopic object moves in the superfluid at velocities exceeding the Landau critical velocity, little to no bulk pair breaking takes place, while the damping observed originates from the bound states covering the moving object. We identify two separate timescales that govern the bound state dynamics, one of them much longer than theoretically anticipated, and show that the bound states do not interact with bulk excitations.

Cite

CITATION STYLE

APA

Autti, S., Ahlstrom, S. L., Haley, R. P., Jennings, A., Pickett, G. R., Poole, M., … Zmeev, D. E. (2020). Fundamental dissipation due to bound fermions in the zero-temperature limit. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18499-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free