Framework for Photon Counting Quantitative Material Decomposition

28Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, the accuracy of material decomposition (MD) using an energy discriminating photon counting detector was studied. An MD framework was established and validated using calcium hydroxyapatite (CaHA) inserts of known densities (50 mg/cm3, 100 mg/cm3, 250 mg/cm3, 400 mg/cm3), and diameters (1.2, 3.0, and 5.0 mm). These inserts were placed in a cardiac rod phantom that mimics a tissue equivalent heart and measured using an experimental photon counting detector cone beam computed tomography (PCD-CBCT) setup. The quantitative coronary calcium scores (density, mass, and volume) obtained from the MD framework were compared with the nominal values. In addition, three different calibration techniques, signal-to-equivalent thickness calibration (STC), polynomial correction (PC), and projected equivalent thickness calibration (PETC) were compared to investigate the effect of the calibration method on the quantitative values. The obtained MD estimates agreed well with the nominal values for density (mass) with mean absolute percent errors (MAPEs) 8 ± 11% (9 ± 15%) and 4 ± 6% (9 ± 14%) for STC and PETC calibration methods, respectively. PC displayed large MAPEs for density (27 ± 9%), and mass (25 ± 12%). Volume estimation resulted in large deviations between true and measured values with notable MAPEs for STC (40 ± 90%), PC (40 ± 80%), and PETC (40 ± 90%). The framework demonstrated the feasibility of quantitative CaHA mass and density scoring using PCD-CBCT.

Cite

CITATION STYLE

APA

Juntunen, M. A. K., Inkinen, S. I., Ketola, J. H., Kotiaho, A., Kauppinen, M., Winkler, A., & Nieminen, M. T. (2020). Framework for Photon Counting Quantitative Material Decomposition. IEEE Transactions on Medical Imaging, 39(1), 35–47. https://doi.org/10.1109/TMI.2019.2914370

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free