Bimetallic 3D nanostar dimers in ring cavities: Recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules

95Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Top-down fabrication of electron-beam lithography (EBL)-defined metallic nanostructures is a successful route to obtain extremely high electromagnetic field enhancement via plasmonic effects in well-defined regions. To this aim, various geometries have been introduced such as disks, triangles, dimers, rings, self-similar lenses, and more. In particular, metallic dimers are highly efficient for surface-enhanced Raman spectroscopy (SERS), and their decoupling from the substrate in a three-dimensional design has proven to further improve their performance. However, the large fabrication time and cost has hindered EBL-defined structures from playing a role in practical applications. Here we present three-dimensional nanostar dimer devices that can be recycled via maskless metal etching and deposition processes, due to conservation of the nanostructure pattern in the 3D geometry of the underlying Si substrate. Furthermore, our 3D-nanostar-dimer-in-ring structures (3D-NSDiRs) incorporate several advantageous aspects for SERS by enhancing the performance of plasmonic dimers via an external ring cavity, by efficient decoupling from the substrate through an elevated 3D design, and by bimetallic AuAg layers that exploit the increased performance of Ag while maintaining the biocompatibility of Au. We demonstrate SERS detection on rhodamine and adenine at extremely low density up to the limit of few molecules and analyze the field enhancement of the 3D-NSDiRs with respect to the exciting wavelength and metal composition. © 2014 American Chemical Society.

Cite

CITATION STYLE

APA

Gopalakrishnan, A., Chirumamilla, M., De Angelis, F., Toma, A., Zaccaria, R. P., & Krahne, R. (2014). Bimetallic 3D nanostar dimers in ring cavities: Recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules. ACS Nano, 8(8), 7986–7994. https://doi.org/10.1021/nn5020038

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free