The lightweight of artificial bone models is one of the most important and challenging topics in the precision medicine (individualized medicine), and porous structures are the first choice to achieve the lightweight. This paper presents a porous structure based lightweight framework of artificial bones, and it consists of porous analysis, modeling and optimization of lightweight, and practical validation. Specially, firstly, the triply periodic minimal surface (TPMS) is exploited to design the porous structures of lightweight. Secondly, a modeling of lightweight is constructed according to the stress condition and the geometric analysis, then, an optimal solution of the lightweight model can be obtained using the finite element analysis. Finally, the 3D printing is utilized to manufacture the lightweight models, which will be further used for practical verification and feedback correction. The experiments show that the lightweight bone models not only meet the specified requirements, such as fully-connected porous structures and conditions of external force, but also have obvious advantages in terms of structure stability, lightweight controllability and individual compatibility, which are ideal for the personalized precision medicine.
CITATION STYLE
Wang, S., Zhou, L., Luo, Z., Luo, Y., & Wang, X. (2017). Lightweight of artificial bone models utilizing porous structures and 3D printing. International Journal of Performability Engineering, 13(5), 633–642. https://doi.org/10.23940/ijpe.17.05.p8.633642
Mendeley helps you to discover research relevant for your work.