Linguistically Differentiating Acts and Recalls of Racial Microaggressions on Social Media

0Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

In this work, we examine the linguistic signature of online racial microaggressions (acts) and how it differs from that of personal narratives recalling experiences of such aggressions (recalls) by Black social media users. We manually curate and annotate a corpus of acts and recalls from in-the-wild social media discussions, and verify labels with Black workshop participants. We leverage Natural Language Processing (NLP) and qualitative analysis on this data to classify (RQ1), interpret (RQ2), and characterize (RQ3) the language underlying acts and recalls of racial microaggressions in the context of racism in the U.S. Our findings show that neural language models (LMs) can classify acts and recalls with high accuracy (RQ1) with contextual words revealing themes that associate Blacks with objects that reify negative stereotypes (RQ2). Furthermore, overlapping linguistic signatures between acts and recalls serve functionally different purposes (RQ3), providing broader implications to the current challenges in content moderation systems on social media.

Cite

CITATION STYLE

APA

Gunturi, U. S., Kumar, A., Ding, X., & Rho, E. H. (2024). Linguistically Differentiating Acts and Recalls of Racial Microaggressions on Social Media. Proceedings of the ACM on Human-Computer Interaction, 8(CSCW1). https://doi.org/10.1145/3637366

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free