Tetrahymena strives to maintain the fluidity interrelationships of all its membranes constant. Electron microscope evidence

37Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

When cells of Tetrahymena pyriformis, strain NT 1, were chilled from their growth temperature of 39.5°C to lower temperatures, the plasma membrane, outer alveolar, nuclear, outer mitochondrial, food vacuolar, and endoplasmic reticulum membranes each responded in a fashion quite characteristic of the membrane type. In most cases a distinctive rearrangement of intramembrane particles, as discerned by freeze fracture electron microscopy, began abruptly at a definitive temperature. By comparing the freeze fracture patterns of membranes in cells grown at 39.5, 27, and 15°C, it was shown that the initial particle rearrangement in given memebrane always occurred at a fixed number of degrees below the growth temperature of the cell. Gradual chilling of a cell grown at constant temperature induced these membrane changes first in the outer alveolar membrane, then, in order of decreasing response to temperature, in the endoplasmic reticulum, outer mitochondrial membrane, nuclear envelope, and vacuolar membrane. The normally stable relationships between the physical properties of the several membrane types could in some cases be reversed, but only temporarily, by fatty acid supplementation or during the initial phases of acclimation to growth at a different temperature. The system provides a unique opportunity to study the effects of environmental change upon the physical properties of several functionally distinct but metabolically interrelated membranes within a single cell.

Cite

CITATION STYLE

APA

Kitajima, Y., & Thompson, G. A. (1977). Tetrahymena strives to maintain the fluidity interrelationships of all its membranes constant. Electron microscope evidence. Journal of Cell Biology, 72(3), 744–755. https://doi.org/10.1083/jcb.72.3.744

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free