Multi-Timescale Wavelet Scattering with Genetic Algorithm Feature Selection for Acoustic Scene Classification

6Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, we apply a genetic algorithm (GA) for feature selection, wrapper approach, on wavelet scattering (WS) second-order coefficients to reduce the large frequency dimension (>500). The evaluation demonstrates the capability of GA to reduce the dimension space by approximately 30% while ensuring a minimum performance drop. Furthermore, the reduced WS directly impacts the training time of the convolutional neural network, by reducing the computational time by 20% to 32%. The paper extends its scopes to explore GA for feature selection on multiple timescales of WS: 46ms, 92ms, 185ms, and 371ms. Incorporating multiple timescales has improved classification performance (by around 2.5%) as an acoustic representation usually contains information at different time scales. However, it can increase computational cost due to the larger frequency dimension of 1851. With the application of GA for feature selection, the frequency dimension is reduced by 50%, saving around 40% computational time, thus increasing the classification performance by 3% compared to a vanilla WS. Lastly, the entire implementations are evaluated using the Detection and Classification of Acoustic Scenes and Events (DCASE) 2020 dataset, and the proposed multiple timescales model achieves 73.32% of classification accuracy.

Cite

CITATION STYLE

APA

Kek, X. Y., Chin, C. S., & Li, Y. (2022). Multi-Timescale Wavelet Scattering with Genetic Algorithm Feature Selection for Acoustic Scene Classification. IEEE Access, 10, 25987–26001. https://doi.org/10.1109/ACCESS.2022.3156569

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free