Development of a Signal-Free Intersection Control System for CAVs and Corridor Level Impact Assessment

1Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Assuming a full market penetration rate of connected and autonomous vehicles (CAVs) would provide an opportunity to remove costly and inefficient traffic lights from intersections, this paper presents a signal-free intersection control system relying on CAVs’ communicability. This method deploys a deep reinforcement learning algorithm and pixel reservation logic to avoid potential collisions and minimize the overall delay at the intersection. To facilitate a traffic-oriented assessment of the model, the proposed model’s application is coupled with VISSIM traffic microsimulation software, and its performance is compared with other intersection control systems, including fixed traffic lights, actuated traffic lights, and the Longest Queue First (LQF) control system. The simulation result revealed that the proposed model reduces delay by 50%, 29%, and 23% in moderate, high, and extreme volume regimes, respectively, compared to another signal-free control system. Noticeable improvements are also gained in travel time, fuel consumption, emission, and Surrogate Safety Measures.

Cite

CITATION STYLE

APA

Mirbakhsh, A., Lee, J., & Besenski, D. (2023). Development of a Signal-Free Intersection Control System for CAVs and Corridor Level Impact Assessment. Future Transportation, 3(2), 552–567. https://doi.org/10.3390/futuretransp3020032

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free