Probe and manipulation of magnetism of two-dimensional CrI3 crystal

3Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

For a long time, it has been generally acknowledged that low-dimensional (lower than three-dimensions) long-range orders cannot stay stable at any finite temperature, because temperature-induced fluctuations can destroy any long-range orders in low-dimensional systems supported by isotropic short-range interactions. However, this theorem requires that the interaction must be short-range and isotropic. In fact, many low-dimensional systems do not meet these two requirements. For example, due to the strong anisotropy in two-dimensional CrI3 crystals, there is a band gap in the magnon spectrum. When the excitation energy from temperature is much lower than the band gap, the magneton cannot be excited by temperature on a large scale, and the long-range magnetic order in the two-dimensional system will not be destroyed. Various methods have been used to characterize the magnetic order in atomically thin CrI3 crystals, and a lot of attempts have been made to manipulate the magnetic structure in the system. Focusing on CrI3, in this article we review the recent studies on growth, magnetic structure measurement and manipulation of two-dimensional magnetic materials, and also discuss the prospects for the next phase of research from the perspectives of basic condensed matter physics research and electronic engineering applications.

Cite

CITATION STYLE

APA

Zhang, S. G., Chen, Y. T., Wang, N., Chai, Y., Long, G., & Zhang, G. Y. (2021, June 20). Probe and manipulation of magnetism of two-dimensional CrI3 crystal. Wuli Xuebao/Acta Physica Sinica. Institute of Physics, Chinese Academy of Sciences. https://doi.org/10.7498/aps.70.20202197

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free