A gene coding for a multicopper oxidase (BopA) was identified through the screening of a metagenomic library constructed from wastewater treatment activated sludge. The recombinant BopA protein produced in Escherichia coli exhibited oxidation activity toward 2,2ʹ-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in the presence of copper, suggesting that BopA is laccase. A bioinformatic analysis of the bopA gene sequence indicated that it has a phylogenetically bacterial origin, possibly derived from a bacterium within the phylum Deinococcus-Thermus. Purified BopA exhibited maximum activity at pH 7.5 with bilirubin as its substrate and was found to be active over a markedly broad pH range from 6 to 11. It also showed notable thermostability; its activity remained intact even after a heat treatment at 90°C for 60 min. This enzyme is a thermostable-bilirubin oxidase that exhibits markedly higher thermostability than that previously reported for laccases.
CITATION STYLE
Kimura, N., & Kamagata, Y. (2016). A thermostable bilirubin-oxidizing enzyme from activated sludge isolated by a metagenomic approach. Microbes and Environments, 31(4), 435–441. https://doi.org/10.1264/jsme2.ME16106
Mendeley helps you to discover research relevant for your work.