Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix

N/ACitations
Citations of this article
79Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Mesenchymal stem cells (MSCs) seeded on three-dimensional (3D) coralline (Porites lutea) biomatrices were irradiated with low-level laser irradiation (LLLI). The consequent phenotype modulation and development of MSCs towards ossified tissue was studied in this combined 3D biomatrix/LLLI system and in a control group, which was similarly grown, but was not treated by LLLI. The irradiated and non irradiated MSC were tested at 1-7, 10, 14, 21, 28 days of culturing via analysis of cellular distribution on matrices (trypan blue), calcium incorporation to newly formed tissue (alizarin red), bone nodule formation (von Kossa), fat aggregates formation (oil red O), alkaline phosphatase (ALP) activity, scanning electron microscopy (SEM) and electron dispersive spectrometry (EDS). The results obtained from the irradiated samples showed enhanced tissue formation, appearance of phosphorous peaks and calcium and phosphate incorporation to newly formed tissue. Moreover, in irradiated samples ALP activity was significantly enhanced in early stages and notably reduced in late stages of culturing. These findings of cell and tissue parameters up to 28 days of culture revealed higher ossification levels in irradiated samples compared with the control group. We suggest that both the surface properties of the 3D crystalline biomatrices and the LLLI have biostimulatory effects on the conversion of MSCs into bone-forming cells and on the induction of ex-vivo ossification. © Springer-Verlag London Limited 2005.

Cite

CITATION STYLE

APA

Abramovitch-Gottlib, L., Gross, T., Naveh, D., Geresh, S., Rosenwaks, S., Bar, I., & Vago, R. (2005). Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers in Medical Science, 20(3–4), 138–146. https://doi.org/10.1007/s10103-005-0355-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free