Robust Tipless Positioning Device for Near-Field Investigations: Press and Roll Scan (PROscan)

0Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Scanning probe microscopes scan and manipulate a sharp tip in the immediate vicinity of a sample surface. The limited bandwidth of the feedback mechanism used for stabilizing the separation between the tip and the sample makes the fragile nanoscopic tip very susceptible to mechanical instabilities. We propose, demonstrate, and characterize an alternative device based on bulging a thin substrate against a second substrate and rolling them with respect to each other. We showcase the power of this method by placing gold nanoparticles and semiconductor quantum dots on the two opposite substrates and positioning them with nanometer precision to enhance the fluorescence intensity and emission rate. Furthermore, we exhibit the passive mechanical stability of the system over more than 1 h. Our design concept finds applications in a variety of other scientific and technological contexts, where nanoscopic features have to be positioned and kept near contact with each other.

Cite

CITATION STYLE

APA

Liu, H. W., Becker, M. A., Matsuzaki, K., Kumar, R., Götzinger, S., & Sandoghdar, V. (2022). Robust Tipless Positioning Device for Near-Field Investigations: Press and Roll Scan (PROscan). ACS Nano, 16(8), 12831–12839. https://doi.org/10.1021/acsnano.2c05047

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free