Application of force on biomolecules has been instrumental in understanding biofunctional behaviour from single molecules to complex collections of cells. Current approaches, for example, those based on atomic force microscopy or magnetic or optical tweezers, are powerful but limited in their applicability as integrated biosensors. Here we describe a new force-based biosensing technique based on the quartz crystal microbalance. By applying centrifugal forces to a sample, we show it is possible to repeatedly and non-destructively interrogate its mechanical properties in situ and in real time. We employ this platform for the studies of micron-sized particles, viscoelastic monolayers of DNA and particles tethered to the quartz crystal microbalance surface by DNA. Our results indicate that, for certain types of samples on quartz crystal balances, application of centrifugal force both enhances sensitivity and reveals additional mechanical and viscoelastic properties.
CITATION STYLE
Webster, A., Vollmer, F., & Sato, Y. (2014). Probing biomechanical properties with a centrifugal force quartz crystal microbalance. Nature Communications, 5. https://doi.org/10.1038/ncomms6284
Mendeley helps you to discover research relevant for your work.