Wheat yield prediction based on weather parameters using multiple linear, neural network and penalised regression models

23Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Wheat yield production is largely attributed by weather parameters. Model developed by multiple linear, neural network and penalised regression techniques using weather data have the potential to provide reliable, timely and cost-effective prediction of wheat yield. Wheat yield data and weather parameter during crop growing period (46th to 15th SMW) for more than 30 years were collected for study area and model was developed using stepwise multiple linear regression (SMLR), principal component analysis (PCA) in combination with SMLR, artificial neural network (ANN) alone and in combination with PCA, least absolute shrinkage and selection operator (LASSO) and elastic net (ENET) techniques. Analysis was carried out by fixing 70% of the data for calibration and remaining dataset for validation. On examining these models, LASSO and elastic net are performing excellent having nRMSE value less than 10 % for four out of five location and good for one location, because of prevention in over fitting and reducing regression coefficient by penalization.

Cite

CITATION STYLE

APA

Aravind, K. S., Vashisth, A., Krishanan, P., & Das, B. (2022). Wheat yield prediction based on weather parameters using multiple linear, neural network and penalised regression models. Journal of Agrometeorology, 24(1), 18–25. https://doi.org/10.54386/jam.v24i1.1002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free