DBMS are a ubiquitous building block of the software stack in many complex applications. Middleware technologies, application servers and mapping approaches hide the core database technologies just like power, networking infrastructure and operating system services. Furthermore, many enterprise-critical applications demand a certain degree of quality of service (QoS) or guarantees, e.g. wrt. response time, transaction throughput, latency but also completeness or more generally quality of results. Examples of such applications are billing systems in telecommunication , where each telephone call has to be monitored and registered in a database, Ecommerce applications where orders have to be accepted even in times of heavy load and the waiting time of customers should not exceed a few seconds, ERP systems processing a large number of transactions in parallel, or systems for processing streaming or sensor data in realtime, e.g. in process automation of traffic control. As part of complex multilevel software stack, database systems have to share or contribute to these QoS requirements, which means that guarantees have to be given by the DBMS, too, and that the processing of database requests is predictable. Todays mainstream DBMS typically follow a best effort approach: requests are processed as fast as possible without any guarantees: the optimization goal of query optimizers and tuning approaches is rather to minimize resource consumption instead of just fulfilling given service level agreements. However, motivated by the situation described above there is an emerging need for database services providing guarantees or simply behave in a predictable manner and at the same time interact with other components of the software stack in order to fulfill the requirements. This is also driven by the paradigm of service-oriented architectures widely discussed in industry. Currently, this is addressed only by very specialized solutions. Nevertheless, database researchers have developed several techniques contributing to the goal of QoS-aware database systems. The purpose of the tutorial is to introduce database researchers and practitioners to the scope, the challenges and the available techniques to the problem of predictability and QoS agreements in DBMS. Copyright 2008 ACM.
CITATION STYLE
Sattler, K. U., & Lehner, W. (2008). Quality of service and predictability in DBMS. In Advances in Database Technology - EDBT 2008 - 11th International Conference on Extending Database Technology, Proceedings (p. 748). https://doi.org/10.1145/1353343.1353444
Mendeley helps you to discover research relevant for your work.