The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: A molecular dynamics simulation study

26Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeration remain critical and complex questions that need to be addressed to advance this technology. Here, we use molecular dynamics (MD) simulations to investigate the effect of model surfactant molecules (polynuclear aromatic carboxylic acids) on the agglomeration behaviour of gas hydrate particles and disruption of the capillary liquid bridge between hydrate particles. The results show that the anti-agglomeration pathway can be divided into two processes: the spontaneous adsorption effect of surfactant molecules onto the hydrate surface and the weakening effect of the intensity of the liquid bridge between attracted hydrate particles. The MD simulation results also indicate that the anti-agglomeration effectiveness of surfactants is determined by the intrinsic nature of their molecular functional groups. Additionally, we find that surfactant molecules can affect hydrate growth, which decreases hydrate particle size and correspondingly lower the risk of hydrate agglomeration. This study provides molecular-level insights into the anti-agglomeration mechanism of surfactant molecules, which can aid in the ultimate application of natural or commercial AAs with optimal anti-agglomeration properties.

References Powered by Scopus

Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems

25300Citations
N/AReaders
Get full text

Development and testing of a general Amber force field

15259Citations
N/AReaders
Get full text

Polymorphic transitions in single crystals: A new molecular dynamics method

15249Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Status of Natural Gas Hydrate Flow Assurance Research in China: A Review

83Citations
N/AReaders
Get full text

Microscopic molecular insights into clathrate methane hydrates dissociation in a flowing system

58Citations
N/AReaders
Get full text

Aggregation Behavior of Asphalt on the Natural Gas Hydrate Surface with Different Surfactant Coverages

42Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Fang, B., Ning, F., Hu, S., Guo, D., Ou, W., Wang, C., … Koh, C. A. (2020). The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: A molecular dynamics simulation study. RSC Advances, 10(52), 31027–31038. https://doi.org/10.1039/d0ra04088f

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 11

52%

Researcher 8

38%

Lecturer / Post doc 2

10%

Readers' Discipline

Tooltip

Engineering 7

50%

Chemical Engineering 3

21%

Energy 2

14%

Chemistry 2

14%

Save time finding and organizing research with Mendeley

Sign up for free