COVID-19 Chest X-ray Classification and Severity Assessment Using Convolutional and Transformer Neural Networks

18Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

The coronavirus pandemic started in Wuhan, China in December 2019, and put millions of people in a difficult situation. This fatal virus spread to over 227 countries and the number of infected patients increased to over 400 million cases, causing over 6 million deaths worldwide. Due to the serious consequence of this virus, it is necessary to develop a detection method that can respond quickly to prevent the spreading of COVID-19. Using chest X-ray images to detect COVID-19 is one of the promising techniques; however, with a large number of COVID-19 infected cases every day, the number of radiologists available to diagnose the chest X-ray images is not sufficient. We must have a computer aid system that helps doctors instantly and automatically determine COVID-19 cases. Recently, with the emergence of deep learning methods applied for medical and biomedical uses, using convolutional neural net and transformer applications for chest X-ray images can be a supplement for COVID-19 testing. In this paper, we attempt to classify three types of chest X-ray, which are normal, pneumonia, and COVID-19 using deep learning methods on a customized dataset. We also carry out an experiment on the COVID-19 severity assessment task using a tailored dataset. Five deep learning models were obtained to conduct our experiments: DenseNet121, ResNet50, InceptionNet, Swin Transformer, and Hybrid EfficientNet-DOLG neural networks. The results indicated that chest X-ray and deep learning could be reliable methods for supporting doctors in COVID-19 identification and severity assessment tasks.

Cite

CITATION STYLE

APA

Dinh, T. L., Lee, S. H., Kwon, S. G., & Kwon, K. R. (2022). COVID-19 Chest X-ray Classification and Severity Assessment Using Convolutional and Transformer Neural Networks. Applied Sciences (Switzerland), 12(10). https://doi.org/10.3390/app12104861

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free