INTRODUCTION Thoracolumbar braces are used to treat Adolescent Idiopathic Scoliosis. The objective of this study was to design and validate a mechanical analog model of the spine to simulate a thoracolumbar, single-curve, scoliotic deformity in order to quantify brace structural properties and corrective force response on the spine. METHODS The Scoliosis Analog Model used a linkage-based system to replicate 3D kinematics of spinal correction observed in the clinic. The Scoliosis Analog Model is used with a robotic testing platform and programmed to simulate Cobb angle and axial rotation correction while equipped with a brace. The 3D force and moment responses generated by the brace in reaction to the simulated deformity were measured by six-axis load cells. RESULTS Validation of the model's force transmission showed less than 6% loss in the force analysis due to assembly friction. During simulation of 10° Cobb angle and 5° axial rotation correction, the brace applied 101 N upwards and 67 N inwards to the apical connector of the model. Brace stiffness properties were 0.5-0.6 N/° (anteroposterior), 0.5-2.3 N/° (mediolateral), 23.3-26.5 N/° (superoinferior), and 0.6 Nm/° (axial rotational). CONCLUSIONS The Scoliosis Analog Model was developed to provide first time measures of the multidirectional forces applied to the spine by a thoracolumbar brace. This test assembly could be used as a future design and testing tool for scoliosis brace technology.
CITATION STYLE
Chung, C. L., Kelly, D. M., Steele, J. R., & DiAngelo, D. J. (2018). A mechanical analog thoracolumbar spine model for the evaluation of scoliosis bracing technology. Journal of Rehabilitation and Assistive Technologies Engineering, 5, 205566831880966. https://doi.org/10.1177/2055668318809661
Mendeley helps you to discover research relevant for your work.