Experimental investigations on mode II fracture of concrete with crushed granite stone fine aggregate replacing sand

23Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

With a view to implement sustainability concepts (namely, use of locally available materials and industrial by-products) in the concrete construction industry, the possibility of use of crushed stone fine aggregate as replacement to river sand is explored in this paper. Towards this, tests have been carried out on concrete cubes and concrete cylinders. The effect of variation in percentage replacement of river sand with crushed stone fine aggregate on the mechanical properties is studied. In order to popularize the locally available material for the construction of shear critical concrete structures (viz. flat slabs, foundation of heavy structures), the Mode - II fracture behavior of the considered concrete is studied using DCN (Double Central Notched) specimens with different notch to depth, (a/w), ratios of 0.3, 0.4, 0.5 and 0.6. For each (a/w) ratio five different percentage replacements (viz. 0, 25, 50, 75 and 100%) are considered. The study indicates that both cube compressive strength and split tensile strength increases with the increase in percentage replacement up to 50% and then gradually decreases. A similar observation was made with respect to the Mode - II fracture energy also. It is noted that the strengths of concrete even with 100% replacement are higher than the concrete with 0% replacement suggesting that the locally available crushed stone fine aggregate can be considered as an alternative to the river sand.

Cite

CITATION STYLE

APA

Rao, K. B., Desai, V. B., & Mohan, D. J. (2012). Experimental investigations on mode II fracture of concrete with crushed granite stone fine aggregate replacing sand. Materials Research, 15(1), 41–50. https://doi.org/10.1590/S1516-14392011005000093

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free