The use of virtual reality (VR) content in neurological disorders with cognitive impairment is increasing. We have developed a device that incorporates virtual drum beating content, designed for digit memorization training. This study aimed to investigate the effects of realistic cognitive training on brain activity using functional near-infrared spectroscopy (fNIRS). Thirty healthy individuals were recruited and randomly assigned into two groups: conventional cognitive exercise (CCE) and a realistic cognitive exergame (RCE). Subjects in the CCE group underwent memory training by memorizing numbers displayed on a computer screen and then writing them on paper. The main outcome measure was the oxyhemoglobin level in the dorsolateral prefrontal cortex (DLPFC). As a result, the average number of digits was 7.86 ± 0.63 for the CCE and 7.6 ± 0.82 for the RCE. The mean difference in ΔHbO was 1.417 ± 0.616 μm (p = 0.029) in channel 2, located in the right DLPFC. Channel 7 and channel 10, which measured activations in the hypothesized medial orbitofrontal cortex (OFC), also showed a significant mean difference of ΔHbO. DLPFC and OFC presented higher activation in the RCE group (p < 0.05), attributable to the simultaneous memory training and virtual drum beating, which provided various sensory inputs (visual, auditory, and vibration). Although DLPFC involvement in cognitive processes remains controversial, our findings suggest that realistic memory training using drumming content can lead to safer activation of the DLPFC compared to conventional cognitive training.
CITATION STYLE
Nam, Y. G., & Kwon, B. S. (2023). Prefrontal Cortex Activation during Memory Training by Virtual Drum Beating: A Randomized Controlled Trial. Healthcare (Switzerland), 11(18). https://doi.org/10.3390/healthcare11182559
Mendeley helps you to discover research relevant for your work.