Direct integration of III-V light emitting sources on Si substrates has attracted significant interest for addressing the growing limitations for Si-based electronics and allowing the realization of complex optoelectronics circuits. However, the high density of threading dislocations introduced by large lattice mismatch and incompatible thermal expansion coefficient between III-V materials and Si substrates have fundamentally limited monolithic epitaxy of III-V devices on Si substrates. Here, by using the InAlAs/GaAs strained layer superlattices (SLSs) as dislocation filter layers (DFLs) to reduce the density of threading dislocations. We firstly demonstrate a Si-based 1.3 μm InAs/GaAs quantum dot (QD) laser that lases up to 111 °C, with a low threshold current density of 200 A/cm2 and high output power over 100 mW at room temperature. We then demonstrate the operation of InAs/GaAs QD superluminescent light emitting diodes (SLDs) monolithically grown on Si substrates. The fabricated two-section SLD exhibits a 3 dB linewidth of 114 nm, centered at ~1255 nm with a corresponding output power of 2.6 mW at room temperature. Our work complements hybrid integration using wafer bonding and represents a significant milestone for direct monolithic integration of III-V light emitters on Si substrates.
CITATION STYLE
Chen, S., Tang, M., Wu, J., Jiang, Q., Dorogan, V., Benamara, M., … Liu, H. (2015). Long-wavelength InAs/GaAs quantum-dot light emitting sources monolithically grown on Si substrate. Photonics, 2(2), 646–658. https://doi.org/10.3390/photonics2020646
Mendeley helps you to discover research relevant for your work.