The Cellular Protein PRA1 Modulates the Anti-apoptotic Activity of Epstein-Barr Virus BHRF1, a Homologue of Bcl-2, through Direct Interaction

37Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Epstein-Barr virus-encoded early protein, BHRF1, is a structural and functional homologue of the anti-apoptotic protein, Bcl-2. There is accumulating evidence that BHRF1 protects a variety of cell types from apoptosis induced by various external stimuli. To identify specific proteins from normal epithelial cells that interact with BHRF1 and that might promote or inhibit its anti-apoptotic activity, we screened a yeast two-hybrid cDNA library derived from human normal foreskin keratinocytes and identified a cellular gene encoding human prenylated rab acceptor 1 (hPRA1). The interaction of hPRA1 with BHRF1 was confirmed using glutathione S-transferase pull-down assays, confocal laser scanning microscopy, and co-immunoprecipitation. Two regions of PRA1, amino acids 30-53 and the carboxyl-terminal 21 residues, are important for BHRF1 interactions and two regions of BHRF1, amino acids 1-18 and 89-142, including the Bcl-2 homology domains BH4 and BH1, respectively, are crucial for PRA1 interactions. PRA1 expression interferes with the anti-apoptotic activity of BHRF1, although not of Bcl-2. These results indicate that the PRA1 interacts selectively with BHRF1 to reduce its anti-apoptotic activity and might play a role in the impeding completion of virus maturation.

Cite

CITATION STYLE

APA

Li, L. Y., Shih, H. M., Liu, M. Y., & Chen, J. Y. (2001). The Cellular Protein PRA1 Modulates the Anti-apoptotic Activity of Epstein-Barr Virus BHRF1, a Homologue of Bcl-2, through Direct Interaction. Journal of Biological Chemistry, 276(29), 27354–27362. https://doi.org/10.1074/jbc.M103821200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free