Ammonia as a Potential Energy Vector in the Burgeoning Hydrogen Economy

2Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The adoption of green hydrogen economy is an indispensable necessity in the current global scenario of environment and energy security. In this endeavor, ammonia is poised to play a key vector of hydrogen to mitigate the challenges arising from transportation, storage and safety. Besides containing a high volumetric and gravimetric hydrogen density, NH3 decomposition into H2 for onsite utilization as a distributed energy source is devoid of greenhouse gases production. In this endeavor, significant technological advancements have been made for in situ production of H2 from NH3 decomposition and the use of NH3 in fuel cell devices to produce electricity. The ammonia decomposition methods to produce H2 mainly involve thermocatalytic, oxidative, electrocatalytic and photocatalytic, among which the catalyst assisted thermal cracking of NH3 has been widely investigated. The research progress in electrolysis of NH3 has been notable in the last couple of years and provides a low-cost alternative to produce H2 at room temperature. In the area of device development, solid oxide fuel cells (SOFC) have witnessed rapid development in the performances and stability, as ammonia is completely decomposed into H2 and N2 at high operating temperature above ~700 °C.

Cite

CITATION STYLE

APA

Kumar, A., Vibhu, V., Bassat, J. M., Nohl, L., de Haart, L. G. J., Bouvet, M., & Eichel, R. A. (2024, August 1). Ammonia as a Potential Energy Vector in the Burgeoning Hydrogen Economy. ChemElectroChem. John Wiley and Sons Inc. https://doi.org/10.1002/celc.202300845

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free