Mahogunin ring finger-1 (MGRN1) suppresses chaperone-associated misfolded protein aggregation and toxicity

36Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Impairment in the elimination of misfolded proteins generates cellular toxicity and leads to various late-onset neurodegenerative diseases. However, the mechanisms by which cells recognize abnormal cellular proteins for selective clearance remain unknown. Lack of the mahogunin ring finger-1 (MGRN1) E3 ubiquitin ligase in mice causes the development of age-dependent spongiform neurodegeneration. Here, we report for the first time that the MGRN1 E3 ubiquitin ligase interacts and nicely co-localizes with the cytosolic molecular chaperone Hsp70. The expression of MGRN1 increased following exposure to a variety of stressors. The inhibition of autophagy not only elevated endogenous MGRN1 levels but also caused MGRN1 to be recruited to cytosolic ubiquitin-positive inclusion bodies. Finally, we showed that the overexpression of MGRN1 protects against cell death mediated by oxidative and endoplasmic reticulum stress. These data suggest that MGRN1 selectively targets misfolded proteins for degradation and may exhibit viable therapeutic potential for the treatment of spongiform neurodegeneration. © 2013 Macmillan Publishers Limited. All rights reserved.

Cite

CITATION STYLE

APA

Chhangani, D., & Mishra, A. (2013). Mahogunin ring finger-1 (MGRN1) suppresses chaperone-associated misfolded protein aggregation and toxicity. Scientific Reports, 3. https://doi.org/10.1038/srep01972

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free