The Ig-Like Domain of Tapasin Influences Intermolecular Interactions

  • Turnquist H
  • Petersen J
  • Vargas S
  • et al.
31Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Presentation of antigenic peptides to T lymphocytes by MHC class I molecules is regulated by events involving multiple endoplasmic reticulum proteins, including tapasin. By studying the effects of substitutions in the tapasin Ig-like domain, we demonstrated that H-2Ld/tapasin association can be segregated from reconstitution of folded Ld surface expression. This finding suggests that peptide acquisition by Ld is influenced by tapasin functions that are independent of Ld binding. We also found that the presence of a nine-amino acid region in the Ig-like domain of mouse or human tapasin is required for association with Ld, and certain point substitutions in this sequence abrogate human, but not mouse, tapasin association with Ld. These data are consistent with a higher overall affinity between Ld and mouse tapasin compared with human tapasin. In addition, we found that other point mutations in the same region of the tapasin Ig-like domain affect MHC class I surface expression and Ag presentation. Finally, we showed that the cysteine residues in the Ig-like domain of tapasin influence tapasin’s stability, its interaction with the MHC class I H chain, and its stabilization of TAP. Mutagenesis of these cysteines decreases tapasin’s electrophoretic mobility, suggesting that these residues form an intramolecular disulfide bond. Taken together, these results reveal a critical role for the tapasin Ig-like domain in tapasin function.

Cite

CITATION STYLE

APA

Turnquist, H. R., Petersen, J. L., Vargas, S. E., McIlhaney, M. M., Bedows, E., Mayer, W. E., … Solheim, J. C. (2004). The Ig-Like Domain of Tapasin Influences Intermolecular Interactions. The Journal of Immunology, 172(5), 2976–2984. https://doi.org/10.4049/jimmunol.172.5.2976

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free