Fiber reinforcement and fracture resistance of PC/PBT/LCP ternary in situ composite

19Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The microstructures, mechanical properties, and fracture toughness of LCP (Vectra B950) reinforced PC/PBT blend with a 60/40 weight ratio have been studied. LCP of varying concentrations were investigated as rigid fillers in matrices of multiphase polymer blends. In this study, differences in microstructures and morphology between samples of two thicknesses (4 mm thick and 6 mm thick) and two geometries (dumbbell and rectangular) were compared using scanning electron microscopy (SEM). Given identical processing conditions, fibrous LCP structures were evident in the 4-mm-thick injection molded, dumbbell-shaped samples, whereas the 6-mm-thick rectangular samples displayed spherical dispersion of LCP aggregates that embrittled the preblended ductile matrix. Tensile properties of the dumb-bell specimens showed superior strengthening and stiffening whereby the tensile strength increased twofold and the modulus increased fourfold. Plane strain fracture toughness was slightly enhanced as the LCP content increased because of the fiber strengthening effect but the overall fracture performance of the in situ composites was relatively poor compared with PC/PBT. Experimental results were compared with those predicted in composite theory. Simplified micromechanics equations were developed to describe the tensile moduli of injection molded LCP reinforced blends that exhibited a strong skin-core morphology.

Cite

CITATION STYLE

APA

Wong, S. C., Mai, Y. W., & Leng, Y. (1998). Fiber reinforcement and fracture resistance of PC/PBT/LCP ternary in situ composite. Polymer Engineering and Science, 38(1), 156–168. https://doi.org/10.1002/pen.10176

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free