Lymph node metastasis (LNM) is considered to be one of the important factors in determining the optimal treatment for early gastric cancer (EGC). This study aimed to develop and validate a nomogram to predict LNM in patients with EGC. A total of 842 cases from the Surveillance, Epidemiology, and End Results (SEER) database were divided into training and testing sets with a ratio of 6: 4 for model development. Clinical data (494 patients) from the hospital were used for external validation. Univariate and multivariate logistic regression analyses were used to identify the predictors using the training set. Logistic regression, LASSO regression, ridge regression, and elastic-net regression methods were used to construct the model. The performance of the model was quantified by calculating the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CIs). Results showed that T stage, tumor size, and tumor grade were independent predictors of LNM in EGC patients. The AUC of the logistic regression model was 0.766 (95% CI, 0.709-0.823), which was slightly higher than that of the other models. However, the AUC of the logistic regression model in external validation was 0.625 (95% CI, 0.537-0.678). A nomogram was drawn to predict LNM in EGC patients based on the logistic regression model. Further validation based on gender, age, and grade indicated that the logistic regression predictive model had good adaptability to the population with grade III tumors, with an AUC of 0.803 (95% CI, 0.606-0.999). Our nomogram showed a good predictive ability and may provide a tool for clinicians to predict LNM in EGC patients.
CITATION STYLE
Li, X., Zhou, H., Zhao, X., Peng, H., Luo, S., Feng, J., … Ge, J. (2022). Establishment and Validation for Predicting the Lymph Node Metastasis in Early Gastric Adenocarcinoma. Journal of Healthcare Engineering, 2022. https://doi.org/10.1155/2022/8399822
Mendeley helps you to discover research relevant for your work.