Subarachnoid hemorrhage is associated with high morbidity and mortality and lacks effective treatment. Pyroptosis is a crucial mechanism underlying early brain injury after subarachnoid hemorrhage. Previous studies have confirmed that tumor necrosis factor-stimulated gene-6 (TSG-6) can exert a neuroprotective effect by suppressing oxidative stress and apoptosis. However, no study to date has explored whether TSG-6 can alleviate pyroptosis in early brain injury after subarachnoid hemorrhage. In this study, a C57BL/6J mouse model of subarachnoid hemorrhage was established using the endovascular perforation method. Our results indicated that TSG-6 expression was predominantly detected in astrocytes, along with NLRC4 and gasdermin-D (GSDMD). The expression of NLRC4, GSDMD and its N-terminal domain (GSDMD-N), and cleaved caspase-1 was significantly enhanced after subarachnoid hemorrhage and accompanied by brain edema and neurological impairment. To explore how TSG-6 affects pyroptosis during early brain injury after subarachnoid hemorrhage, recombinant human TSG-6 or a siRNA targeting TSG-6 was injected into the cerebral ventricles. Exogenous TSG-6 administration downregulated the expression of NLRC4 and pyroptosis-associated proteins and alleviated brain edema and neurological deficits. Moreover, TSG-6 knockdown further increased the expression of NLRC4, which was accompanied by more severe astrocyte pyroptosis. In summary, our study revealed that TSG-6 provides neuroprotection against early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome activation-induced astrocyte pyroptosis.
CITATION STYLE
Ding, M., Jin, L., Wei, B., Cheng, W., Liu, W., Li, X., & Duan, C. (2024). Tumor necrosis factor-stimulated gene-6 ameliorates early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome-mediated astrocyte pyroptosis. Neural Regeneration Research, 19(5), 1064–1071. https://doi.org/10.4103/1673-5374.385311
Mendeley helps you to discover research relevant for your work.