Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches

148Citations
Citations of this article
429Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cutinases are promising agents for poly(ethylene terephthalate) (PET) bio-recycling because of their ability to produce the PET monomer terephthalic acid with high efficiency under mild reaction conditions. In this study, we found that the low-crystallinity PET (lcPET) hydrolysis activity of thermostable cutinase from Thermobifida fusca (TfCut2), was increased by the addition of cationic surfactant that attracts enzymes near the lcPET film surface via electrostatic interactions. This approach was applicable to the mutant TfCut2 G62A/F209A, which was designed based on a sequence comparison with PETase from Ideonella sakaiensis. As a result, the degradation rate of the mutant in the presence of cationic surfactant increased to 31 ± 0.1 nmol min−1 cm−2, 12.7 times higher than that of wild-type TfCut2 in the absence of surfactant. The long-duration reaction showed that lcPET film (200 μm) was 97 ± 1.8% within 30 h, the fastest biodegradation rate of lcPET film thus far. We therefore believe that our approach would expand the possibility of enzyme utilization in industrial PET biodegradation.

Cite

CITATION STYLE

APA

Furukawa, M., Kawakami, N., Tomizawa, A., & Miyamoto, K. (2019). Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-52379-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free