Gene selection for classification of microarray data based on the Bayes error

87Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy. Results: In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes. Conclusion: The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection. © 2007 Zhang and Deng; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Zhang, J. G., & Deng, H. W. (2007). Gene selection for classification of microarray data based on the Bayes error. BMC Bioinformatics, 8. https://doi.org/10.1186/1471-2105-8-370

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free