According to atmospheric chemistry models, isoprene nitrates play an important role in determining the ozone production efficiency of isoprene; however this is very poorly constrained through observations as isoprene nitrates have not been widely measured. Measurements have been severely restricted largely due to a limited ability to measure individual isoprene nitrate isomers. An instrument based on gas chromatography/mass spectrometry (GCMS) and the associated calibration methods are described for the speciated measurements of individual isoprene nitrate isomers. Five of the primary isoprene nitrates which formed in the presence of NO x by reaction of isoprene with the hydroxyl radical (OH) in the Master Chemical Mechanism are identified using known isomers on two column phases and are fully separated on the Rtx-200 column. Three primary isoprene nitrates from the reaction of isoprene with the nitrate radical (NO3) are identified after synthesis from the already identified analogous hydroxy nitrate. A Tenax adsorbent-based trapping system allows the analysis of the majority of the known hydroxy and carbonyl primary isoprene nitrates, although not the (1,2)-IN isomer, under field-like levels of humidity and showed no impact from typical ambient concentrations of NO x and ozone.
CITATION STYLE
Mills, G. P., Hiatt-Gipson, G. D., Bew, S. P., & Reeves, C. E. (2016). Measurement of isoprene nitrates by GCMS. Atmospheric Measurement Techniques, 9(9), 4533–4545. https://doi.org/10.5194/amt-9-4533-2016
Mendeley helps you to discover research relevant for your work.