Objective - To investigate the in vitro load/displacement characteristics of the hip joints in dogs as a function of joint position. Sample Population - 10 hip joints from 5 healthy dogs. Procedure - A material test system was used to generate load/displacement curves for each joint. Joints were mounted in a custom-designed jig that held the joint in fixed anatomic orientations while plotting displacement and corresponding applied loads. All hips were cycled between 40 N of compression and 80 N of distraction. Each hip was tested at 10 ° increments from 30 ° flexion to 70 ° extension. Results - When the hips were in a neutral orientation (approximately a standing position), load/displacement curves were characteristically sigmoidal (tri-phasic), indicating that, in this position, displacement was not highly dependent on load. The curves had a central low-stiffness region in which most of the lateral displacement took place. In contrast, when hips were positioned at the extremes of flexion and extension, this central, low-stiffness region was less distinct, and load/displacement curves were more linear, indicating a proportional relation between load and displacement. The load/displacement curve of 1 hip joint in the study deviated markedly from the others in a pattern consistent with cavitation of the synovial fluid. Conclusions - When the hip joint is positioned in a neutral position, load-displacement behavior is sigmoidal, whereas when the hip joint is in an extended position, load/displacement behavior is more linear. Clinical Relevance - Establishing load/displacement behavior of the hip joints in dogs was an important exercise in establishing the position for and estimating the repeatability of a clinical stress-radiographic method for quantitating joint laxity in dogs.
CITATION STYLE
Smith, G. K., LaFond, E., Heyman, S. J., Cofone, M. A., & Gregor, T. P. (1997). Biomechanical characterization of passive laxity of the hip joint in dogs. American Journal of Veterinary Research, 58(10), 1078–1082. https://doi.org/10.2460/ajvr.1997.58.10.1078
Mendeley helps you to discover research relevant for your work.