Here, a smartphone-based portable sensing system is developed for real-time detection of Ca2+ ions in a variety of biofluids. A solid-contact calcium-selective electrode (Ca2+-ISE) consisting of an ion-selective membrane (ISM), carbon black nanomaterial and polystyrene-graphite nanoplatelets as a solid contact was fabricated. The polyvinylchloride (PVC)-based ISM was optimized using different plasticizers and ion-exchangers. Under optimized conditions, the solid contacts were electrochemically characterized by electrochemical impedance spectroscopy (EIS), chronopotentiometric and potentiometric measurements. The Ca2+-ISE showed a Nernst response with a slope of 31.2 ± 0.6 mV/decade in the concentration range from 0.1 M to 10−4 M Ca2+ with a limit of detection (LOD) of 1.0 × 10–5 M. In addition, the ISEs exhibited good selectivity to Ca2+ ions over various interfering electrolytes and metabolites. The Ca2+-ISEs were applied in human urine and, artificial serum and cerebrospinal fluid samples. The ISEs showed good recoveries between 90 and 105%, indicating potential applicability of these electrodes in biological fluids. The portable lab-made potentiometer provides wireless data signaling and transmission to a smartphone and final Ca2+ concentration display due to its customized software. Therefore, the developed smartphone-based sensing platform offers low cost (< $25), rapid, user-friendly detection of Ca2+ especially in resource-limited areas. Graphical abstract: [Figure not available: see fulltext.]
CITATION STYLE
Ozer, T. (2022). Carbon composite thermoplastic electrodes integrated with mini-printed circuit board for wireless detection of calcium ions. Analytical Sciences, 38(9), 1233–1243. https://doi.org/10.1007/s44211-022-00164-w
Mendeley helps you to discover research relevant for your work.