Stabilization of the biotinoyl domain of Escherichia coli acetyl-CoA carboxylase by interactions between the attached biotin and the protruding "thumb" structure

20Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We previously reported (Chapman-Smith, A., Forbes, B. E., Wallace, J. C., and Cronan, J. E., Jr. (1997) J. Biol. Chem. 272, 26017-26022) that the biotinylated (holo) species of the biotin carboxyl carrier protein (BCCP) biotinoyl domain is much more resistant to chemical modification and proteolysis than the unbiotinylated (apo) form. We hypothesized that the increased stability was due to a conformational change engendered by interaction of the domain with biotin protein ligase, the enzyme that attaches the biotin moiety. We now report that a BCCP-87 species to which the biotin moiety was attached by chemical acylation rather than by biotin protein ligase showed the characteristically greater stability of the holo biotinoyl domain. This result demonstrates that our hypothesis was incorrect; the attached biotin is solely responsible for the increased stability. The bacterial and chloroplast multisubunit acetyl-CoA carboxylases are unusual in that the highly symmetrical and conserved structure of the biotinoyl domain of the BCCP subunit is disrupted by a structured loop called the "thumb" that protrudes from body of the domain. Prior structural work showed that the thumb interacts with uriedo ring of the attached biotin moiety. We have tested whether the thumb-biotin interactions are responsible for the greater halo form stability by examination of two BCCP-87 species that lack the thumb. These BCCP species were produced in both the apo and holo forms, and their sensitivities to trypsin digestion were compared. The halo forms of these proteins were found to be only marginally more stable than their apo forms and much more sensitive to trypsin digestion than the wild type holo-BCCP-87. Therefore, removal of the thumb has an effect similar to lack of biotinylation, indicating that thumb-biotin interactions are responsible for most (but not all) of the increased stability of the holo biotinoyl domain. In the course of these experiments we demonstrated that treatment of Escherichia coli with the peptide deformylase inhibitor, actinonin, results in the expected (but previously unreported) accumulation of an N-formylated protein species.

Cite

CITATION STYLE

APA

Solbiati, J., & Cronan, J. E. (2002). Stabilization of the biotinoyl domain of Escherichia coli acetyl-CoA carboxylase by interactions between the attached biotin and the protruding “thumb” structure. Journal of Biological Chemistry, 277(24), 21604–21609. https://doi.org/10.1074/jbc.M201928200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free