Cultural heritage monitoring by low-cost gnss receivers: A feasibility study for san gaudenzio's cupola, novara

6Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In this study the cupola of San Gaudenzio's Basilica in Novara, Italy, has been monitored by using two low-cost GNSS receivers located on the East and West side of the spire. Time series of daily solutions for an observation period of about one year have been collected and interpolated by cubic splines. The minimum description length criterion has been used to optimize this interpolation. The results show that the building had an uplift with a maximum amplitude of about 2 cm during summer. Moreover, from a joint analysis of the two points, one can realize that the uplift is not homogeneous, but the structure made some oscillations (with an amplitude at most of 4 mm) when rising up. As for the planimetric coordinates, the two antennas had a slightly different behaviour. The West point showed displacements at most of 1 cm and solutions with a very high repeatability of the order of few millimeters. The East point had a similar repeatability until a sudden jump occurred, followed by more noisy solutions in all the three directions. This noise degradation slowly dampened, till almost disappearing at the end of the recorded time series. This anomalous behaviour could be attributed to some structural movements. The test was successful in the sense that (1) it was proved that the millimeter accuracy can be reached by using GNSS low-cost receivers installed at San Gaudenzio's cupola, even with a non-perfect sky visibility; (2) such an accuracy is able to show interesting movements of the cupola that can provide information about its stability.

Cite

CITATION STYLE

APA

Barzaghi, R., Reguzzoni, M., De Gaetani, C. I., Caldera, S., & Rossi, L. (2019). Cultural heritage monitoring by low-cost gnss receivers: A feasibility study for san gaudenzio’s cupola, novara. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. 42, pp. 209–216). Copernicus GmbH. https://doi.org/10.5194/isprs-Archives-XLII-2-W11-209-2019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free