Though there have been many efforts to make the inverse problem of damage identification small by reducing its finite element degrees-of-freedom, there have been few efforts to make it small by reducing its spatial domain of problem. Thus, as the extension of the author's previous work in which the damage identification algorithm was formulated from the dynamic stiffness equation of motion, the present study introduces a spectral element model (SEM)-based reduced-domain method (RDM) of damage identification. In the present RDM, a three-steps process is used to reduce the domain of problem by iteratively searching out and removing damage-free parts of structure in the course of the damage identification analysis. To validate the present RDM, numerically simulated damage identification tests are conducted. The experimental tests for a damaged cantilevered beam specimen show that the present RDM can fairly well locates and quantifies all local damages (i.e., slots) placed along the beam specimen.
CITATION STYLE
Lee, U. (2003). A reduced-domain method of structural damage identification: Application to a spectral element beam model. Shock and Vibration, 10(5–6), 313–324. https://doi.org/10.1155/2003/937318
Mendeley helps you to discover research relevant for your work.