Decoration of Reduced Graphene Oxide with Magnesium Oxide during Reflux Reaction and Assessment of Its Antioxidant Properties

7Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

The aim of this work is the reduction and decoration of graphene oxide (GO) with magnesium oxide (MgO). In this work, GO was synthesized using modified Hummers’ protocol with (1:2), (1:3) and (1:4) graphite:potassium permanganate mass ratios. Subsequently, all GO samples (GO1:2, GO1:3, GO1:4) were reduced and decorated with magnesium oxide nanoparticles using a reflux technique at 100 °C for 2 h. Sample characterization using X-ray diffraction (XRD) reveals the presence of peaks relative to two different magnesium (Mg) phases: magnesium oxide (MgO) and magnesium hydroxide (Mg(OH)2). The presence of these spectral features, although characterized by a remarkable broadening, confirms the successful synthesis of Mg(OH)2-rGO-MgO nanocomposites. X-ray photoelectron spectroscopy (XPS) spectra indicate the presence of peaks assigned to C, O and Mg. The analysis of the high-resolution XPS spectra of these elements confirms once again the presence of Mg(OH)2-rGO-MgO compounds. The low temperature synthesis of Mg(OH)2-rGO-MgO nanocomposite exhibiting superior catalytic properties compared to MgO–rGO nanoparticles is an important step forward with respect to the current state of the art. The antioxidant activity of six nanocomposites, namely GO1:2, GO1:3, GO1:4, MgO–rGO1:2, MgO–rGO1:3 and MgO–rGO1:4, was determined using standard protocols based on a DPPH radicals scavenging assay, an H2O2 scavenging assay, and a phosphomolybdate assay. All our samples exhibited dose-dependent antioxidant activity. Interestingly, among the different synthesized nanoparticles, GO1:4 and MgO–rGO1:4 showed the best performances.

Cite

CITATION STYLE

APA

Bensouici, A., Baali, N., Bouloudenine, R., & Speranza, G. (2022). Decoration of Reduced Graphene Oxide with Magnesium Oxide during Reflux Reaction and Assessment of Its Antioxidant Properties. C-Journal of Carbon Research, 8(4). https://doi.org/10.3390/c8040049

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free