Ile115Leu mutation in the SRSI region of an insect cytochrome P450 (CYP6B1) compromises substrate turnover via changes in a predicted product release channel

41Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

CYP6B1 represents the principal cytochrome P450 monooxygenase responsible for metabolizing furanocoumarins in Papilio polyxenes, an insect that specializes on host plants containing these toxins. Investigations of the amino acids responsible for the efficient metabolism of these plant toxins has identified Ile115 as one that modulates the rate of furanocoumarin metabolism even though it is predicted to be positioned at the edge of the heme plane and outside substrate contact regions. In contrast to previous expression studies conducted under conditions of limiting P450 reductase showing that the Ile115-to-Leu replacement enhances turnover of xanthotoxin and other furanocoumarins, studies conducted at high P450 reductase indicate that the Ile115-to-Leu replacement reduces turnover of these substrates. Further analysis of substrate binding affinities, heme spin state and NADPH consumption rates indicate that, whereas the I115L replacement mutant displays higher substrate affinity and heme spin state than the wild-type CYP6B1 protein, it utilizes NADPH more slowly than the wild-type CYP6B1 protein at high P450 reductase levels. Molecular models developed for the wild-type CYP6B1 and mutant protein suggest that more constricted channels extending from the catalytic site in the I115L mutant to the P450 surface limit the rate of product release from this mutant catalytic site under conditions not limited by the rate of electron transfer from NADPH. © The Author 2005. All rights reserved.

Cite

CITATION STYLE

APA

Wen, Z., Baudry, J., Berenbaum, M. R., & Schuler, M. A. (2005). Ile115Leu mutation in the SRSI region of an insect cytochrome P450 (CYP6B1) compromises substrate turnover via changes in a predicted product release channel. Protein Engineering, Design and Selection, 18(4), 191–199. https://doi.org/10.1093/protein/gzi023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free